On the bipartite graph packing problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Problem Kernelization for Graph Packing

For a fixed connected graph H , we consider the NP-complete H-packing problem, where, given an undirected graph G and an integer k ≥ 0, one has to decide whether there exist k vertex-disjoint copies of H in G. We give a problem kernel of O(k ) vertices, that is, we provide a polynomial-time algorithm that reduces a given instance of H-packing to an equivalent instance with at most O(k ) vertice...

متن کامل

on bipartite divisor graph for character degrees

‎the concept of the bipartite divisor graph for integer subsets has been considered in [‎m‎. ‎a‎. ‎iranmanesh and c‎. ‎e‎. ‎praeger‎, ‎bipartite divisor graphs for integer subsets‎, ‎{em graphs combin.}‎, ‎{bf 26} (2010) 95--105‎.]‎. ‎in this paper‎, ‎we will consider this graph for the set of character degrees of a finite group $g$ and obtain some properties of this graph‎. ‎we show that if $g...

متن کامل

on bipartite divisor graph for character degrees

the concept of the bipartite divisor graph for integer subsets has been considered in [‎graph combinator., ‎ 26 (2010) 95--105‎.]. ‎in this paper‎, ‎we will consider this graph for the set of character degrees of a finite group $g$ and obtain some properties of this graph‎. ‎we show that if $g$ is a solvable group‎, ‎then the number of connected components of this graph is at most $2$ and if $g...

متن کامل

Note on Bipartite Graph Tilings

Let s < t be two fixed positive integers. We determine sufficient minimum degree conditions for a bipartite graph G, with both color classes of size n = k(s + t), which ensure that G has a Ks,t-factor. Our result extends the work of Zhao, who determined the minimum degree threshold which guarantees that a bipartite graph has a Ks,s-factor.

متن کامل

The Bipartite Swapping Trick on Graph Homomorphisms

We provide an upper bound to the number of graph homomorphisms from G to H, where H is a fixed graph with certain properties, and G varies over all N -vertex, d-regular graphs. This result generalizes a recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of Galvin and Tetali, who studied the number of graph homomorphisms from G to H when G is bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.04.019